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An orthotropic, small strain viscoplasticity theory based on
overstress is presented, In each preferred direction the stress is
composed of time (rate)-independent (or plastic) and viscous (or rate-
dependent) contributions. Tension-compression asymmetry can depend on
direction and is included in the model. Upon a proper choice of a
material constant one preferred direction can exhibit linear elastic
response while the other two deform in a viscoplastic manner,

INTRODUCTION

Recently directionally solidified alloys, nickel base single
crystal superalloys and other anisotropic metallic composites have
attracted interest for use in gas turbines and other high temperature
applications, The usual high temperature phenomena such as creep,
relaxation, rate sensitivity, recovery and aging found in nearly iso-
tropic materials are also present in these materials. However, all these
properties are now dependent on direction.

For the prediction of life of components made of anisotropic
materials and operating at elevated temperature the deformation behavior
must be known in addition to anisotropic damage accumulation laws. It
is the purpose of this paper to introduce an orthotropic version of the
viscoplasticity theory based on overstress (VBO), (the transversely
isotropic case can be recovered as a specialization). The uniaxial and
the isotropic version of VBO were introduced previously [1,2]. The theory
is of the unified type (plasticity and creep are not represented by
separate constitutive equations) and does not employ the concepts of a
yield surface and associated loading and unloading conditions. In the
present form of the theory aging and recovery are not accounted for but
can be added if need arises,

1 Now with General Electric Corporate R&D Center, Schenectady, NY.
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The orthotropic formulation was derived with the help of tensor
function representation theorems [3] and the uniaxial version of the
VBO, Simplicity was a goal as long as it was consistent with the
necessity of modeling key material phencmena, The temsor function
approach is not restricted to the orthotropic case and can be applied
to other material symmetries as well,

UNIAXIAL PROPERTIES OF VBO INCLUDING ASYMPTOTIC SOLUTIONS

In the formulation of VBO special consideration was given to the
modeling of elastic regions in addition to the usual time-dependent
properties [1]. A useful property of the system of nonlinear differ-
ential equations is the existence of asymptotic solutions which are
algebraic expressions. They apply mathematically at infinite time in
a constant strain rate or creep, or relaxation test. However, it is
our experience that these asymptotic solutions can be used with confi-
dence when plastic flow is fully developed in a tensile test [1,4].

A schematic of the properties of the model in a tensile test is
given in Fig.l. The evolution of the stress o, the equilibrium stress g
(which is reached when all rates approach zero) and of the quantity
f=Ece are shown, It is introduced for modeling a nonzero slope Et in

the plastic region even when the asymptotic solutions are attained. The
asymptotic values are indicated by { } in Fig.1. It is seen that the
stress consists of {¢- g}, the time-independent or viscous contribution,
of {g- £} which represents the time-independent or plastic part and of
the portion which grows linearly with ¢; it is termed the hardening
contribution. It is zero when the tangent modulus E_ is set to zero,
see [1,2] for further details. In a neighborhood of the origin, ¢ and g
almost coincide and nearly elastic behavior is represented,.

In the formulation of the anisotropic version of VBO the elastic
properties can depend on direction, In addition, it was felt necessary
to have separate directional properties for the viscous, the plastic and
the hardening contributions to the stress. (It is important to note
that the theory does not separately formulate plastic and time-dependent
constitutive equations, However, the asymptotic solutions of the theory
permit such a distinction,) The reason for this distinction lies in the
realization that different material constituents may be used in different
directions (example; directionally solidified alloys) or that the micro-
structure may develop an orientation dependence. Moreover, fibers with
predominantly elastic behavior may run in one direction and the visco-
plastic matrix may control the behavior in other directions,

AN ORTHOTROPIC VISCOPLASTICITY THEORY BASED ON OVERSTRESS

In [6] a fully invariant theory is developed with arbitrary
orientation of the principal material axes relative to the coordinate
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system used in the representation of the tensors, Presently we assume
that the coordinate system in which the tensor components are given
coincides with the material axes. Vector notation is used with

C,,=C

117517 9227925 09337035 9,370, 01305 and g ,%0g 1)

and with a similar convention for the small strain ¢ except that
engineering shear strains are used for the vector components €,
through €g

The evolution of the stress is governed by

dg/dt = g’{di/dt - d'gin/dt} 2)

where C is the matrix of elastic constants. The inverse of E; 9:1 is

given by, see [5]

— —
1/E; - VZI/EZ- v31/E3 0 0 0
l/Ez- v32/E3 0 0 0
971 - l/E3 0 0 0 3)
Symmetric 1/G23 0 0
1/G13 0
1/G12

i
The inelastic strain rate dg B/at is represented by

dg'®/de = K[ Rx )

where the positive function K[I'] is a repository of viscous effects
(R[] = 1/ €Ek[T')) where k[I'] is the viscosity function used in [1]).
The dimensionless components of the matrix R are called the inelastic
lateral ratios. The invariant I' is defined as

r = ol + olu (5)

with ﬁ? = [a1 a,a,00 0], where the dimensionless components a, are
zero when the viscous effects are the same in tension and compression.
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VY is the matrix of the viscous lateral ratios, The overstress is
x =g-g. The equilibrium stress evolves according to
2 in
dg/dt = y[rIB[rl(de/de - 8°dg™ /dt) (6)

This growth law is very similar to the one used in [1,2]. The invariant
8 is given by

1/2

8 = ((§‘T'S~§‘§') + ")"T'Svg')/A @)

with E? = [b1 b2 b3 0 0 0]. The dimensionless components bi are zero

when the plastic effects in tension and compression are equal, The
analysis of the asymptotic behavior of the uniaxial equivalent of (6)

in [1] shows that {g- f} in Fig.l equals the constant A which has the
dimension of stress., The dimensionless components of the matrix S are
the plastic lateral ratios. The dimensionless components of B are called

shape ratios and are initially equal to the components of Elgf called

2
the elastic ratios, The positive, decreasing shape function w[F] has the
dimension of stress with §[0] slightly less than the elastic modulus El’

see [1]. For simplicity the tangent modulus E_ was set equal to zero so
that £ in Fig.l is zero and all the stress-strain curves become ulti-
mately horizontal.

Due to orthotropy, the matrices R, V, § and B all have the same

representation as the matrix C 1 in (3) and have therefore nine inde-
pendent components, The components of each matrix can be selected
independently to model the observed directional dependence of the various
material properties.

The initial elastic properties are controlled by E as in the case

of elasticity, The evolution of the inelastic strain rates are influenced
by R and V. They also contribute to the asymptotic overstress {ﬁ], see

Fig.l, given by
{x} = R°" a¢/ae/rI{r}] (8)

The asymptotic time-independent or plastic contribution to the
stress is controlled by the invariant § through

32 =1 @)

and it is seen from (7) that the directional properties are controlled
by § alone,
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Detailed analysis in [6] shows that the matrix B together with

the shape function §[I'] controls the "knee" of the stress-strain curves
in different directionms,

A simplified version which has been shown to be useful [6] is
to set R = §f1 = Elgfl and to choose §land X independently. This choice
permits the independent adjustment of the viscous and plastic asymptotic

contributions to the stress. Within this choice it is possible to model

i) purely elastic behavior under a hydrostatic state of
stress,

ii) linear elastic behavior in any of the preferred
directions while the other directions behave in a
viscoplastic manner,

This last property is very useful for modeling fiber reinforced materials.

It should also be stressed that the theory permits the modeling of tension/
compression asymmetry which depends on direction through the dimensionless

vectors a and b,

The capabilities of the theory are demonstrated in Figs,2 through 4,
They depict the response of a transversely isotropic material to a con-
stant strain rate tensile test in the 1- and 3-directions, respectively.

In Fig,.2 R= S =V = B-l = EIC“1 and the evolution of the stress and of
~ "~ ~ ~, ~ 1

the equilibrium stress are governed by the values of gf . It is seen
that the elastic modulus, the stress and the overstress in the 3-direction
are always larger than in the l-direction, When S33 and V33 are set equal

to zero (all other quantities are the same as in Fig.2) the response in
the 3-direction is nearly linear elastic whereas that in the l-direction
is unaffected, see Fig.3. When S33 is set equal to 0.5 (instead of

50/35 used in Fig.2; all other quantities are unchanged from Fig,2) the
curves of Fig.4 result, This choice will increase {g@a], the plastic or
time independent part of the stress, but will leave the overstress, the
viscous contribution to the stress, unchanged. Due to the nature of the
constants the equilibrium solution has not been attained within the
1limits of the graph in Fig.4.

The above represents only part of the capabilities of the theory
developed in [6]. It includes an incompressible inelastic, deviatoric
formulation. Further developments are given in [7). The theory needs
to be applied to real anisotropic materials so that the material func-
tions and constants can be identified and the usefulness of the theory
be demonstrated,
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without changing {033-g33).
The response in the l-direction is unaltered.



